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Learning Objectives: 

 

From this module students may get to know about the following: 

1. Relativistic motion of charged particle in static but nonuniform 

magnetic field configurations. 

2. Motion in a magnetic field with gradient perpendicular to the 

direction of the magnetic field leading to gradient drift. 

3. Motion in magnetic field with curving lines of force leading to the 

curvature drift. 

4. Motion when both gradient and curvature drift are present. 

5. Motion along the direction of a slowly varying magnetic field and the 

idea of adiabatic invariance.  Use of such a configuration as magnetic 

mirror. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

22. Motion in Nonuniform, Static Magnetic Fields - II 
 

22.1 The Gradient Drift 
 

We now study the nature of particle trajectories in a static but non-uniform magnetic field.  

Consideration of non-uniform magnetic fields is of interest in many areas, such as magneto-

hydrodynamics, astrophysics and thermonuclear applications. Often, as in the case of 

interstellar and intergalactic space, the field is rather slowly varying, so that the problem can 

be tackled perturbatively.  We know that for a uniform and static magnetic field, the 

trajectory of a particle is a helix with uniform motion along the direction of field and circular 

motion with certain radius of gyration in a plane perpendicular to the field.  By slowly 

varying we mean the distance over which the field varies appreciably in magnitude or 

direction is large compared to the radius of gyration of the particle, so that over one gyration 

the field can be taken to be nearly constant locally.  The motion is then one of gyration with a 

radius and frequency that depends on the “local” value of the field.  In the next order of 

approximation, slow changes occur in the orbit of the particle which can be described as the 

“drift” of the guiding centre.   

 

Let us first consider a spatial variation of the magnetic field B


 which is a gradient 

perpendicular to the direction of the field.  Let the gradient at the point of interest be in the 

direction of the unit vector, n̂ , so that 0.ˆ Bn


.  The particle has charge q, mass m and 

velocity v


.  Then to first order, the gyration frequency can be written as [refer to the last 

module] 
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Here γ is the usual Lorentz factor 
2

2

1/1
c

v
 , 

0B


 is the field at the guiding centre, 0B  is its 

magnitude, and 0


 the gyration frequency at that point.  Since the direction of the field is 

unchanged, the motion of the particle parallel to the field remains a uniform translation.  

Therefore we consider modifications in the motion perpendicular to the field only.   Let 0v


 be 

the transverse velocity of the particle in the uniform field case and 1v


 the correction to it.  

Since the non-uniformity of the field is small, the magnitude of 1v


 is small compared to that 

of 0v


.  Let us write  
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for the transverse component of the velocity of the particle.  Then from the Lorentz force 

equation we obtain 
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On comparing the zero and first order terms, we obtain 
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The first is the equation for the unperturbed motion.  In the second only the first order terms 

are retained consistently, ).()(
1

0

0

01 xn
B

B
v









 , being a second order term in 

perturbation, is ignored. .   
 

The solution of the problem in a uniform and static magnetic field is well known and we have 

derived it earlier (Motion in Electric and Magnetic Fields – Part I).  In the transverse direction 

the solution is 

 

  ytaxtav BBBB
ˆ)sin(ˆ)cos(  


     (6) 

 

  ytaxtaXtx BBo
ˆ)cos(ˆ)sin()(  


.    (7)  

 

On taking the cross product of the above two equations with B


, which is a vector along the 

z-direction, we have 
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In the present case the unperturbed velocity is 0v


, the unperturbed position is 0x


 and the 

unperturbed frequency is 0


.  The centre of gyration of the unperturbed motion has been 

taken to be the origin, hence 00 X


.  On making the appropriate changes in the symbols we 

have 
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Next we use equation (9) to eliminate )( 00 v


  from equation (5) to get 
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Had the additional factor 00000
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been similar to the one for the zero order equation, viz., the oscillatory solution, 
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, the solution has an additional term with a nonzero average 

value: 
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The rectangular components of )( 0x


 oscillate sinusoidally with amplitude a and a phase 

difference of 2/  [look at equation (9)].  Hence only the component of  )( 0x


 parallel to n̂  

contributes to the average.  Thus 
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Substituting this value into equation (11), we have for the gradient drift velocity 
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Since 


B
 is the normal gradient of magnetic field (in the direction of n̂ ), Bn

B
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
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Also, 0


 and B


 being parallel, BB


00   .  So equation (13) can be written in an 

alternative dimensionless form, independent of the coordinates: 
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 From equation (14) it is evident that if the gradient of the field is small compared to 

the field, i.e., ,1


B

B
a  the drift velocity is small compared to the orbital velocity 

)( 0a .  The particle spirals rapidly while its centre of rotation moves slowly in a 

direction normal to both B


 and gradient of B.   

 

 The sense of drift is given by (14) for positively charged particles.  That is, if the 

field is along the z- direction and its gradient along the x-direction, then the drift will 

be in the positive y-direction. 

 

 For negatively charged particles 0 has a negative sign (
mc

Bq






0 ) and hence the 

direction of the drift is opposite. [See FIGURE, Fig12.3, Jackson Edition 2] 

 

 
 

 Qualitative explanation: The gradient drift can be understood qualitatively in the 

following way: As the particle circles around the guiding centre, it passes through 

regions of varying field.  For half the cycle the field is greater than the average and 

for the other half it is less than the average field.  Since the radius of gyration is 

inversely proportional to the field, for half the cycle the particle moves in a tighter 

than the average arc and for the other half in a broader than the average arc, 

producing a net drift in the transverse direction.  

 

22.2 The Curvature Drift 
 

The second type of field variation we consider is the curvature of lines of force.  This type of 

variation also leads to a drift of the guiding centre, called the curvature drift.  Consider a two 

dimensional field.  To be specific, let the field be in the x-y plane.  The unperturbed uniform 

field, 
0B


, is along the x-axis.  In such a field a particle spirals around the lines of force with 

radius of gyration, a, and velocity aB .  For the field under consideration the lines of force 

are curved with a local radius of curvature R which is large compared to the radius of 

gyration.  Therefore the nonuniformity can be regarded as a small perturbation to the 

unperturbed motion.  [Sea FIGURE, Fig 12.4(a) and (b) Jackson] 



 

 

 
 

Physically the first order motion can be understood as follows:  The particle tends to spiral 

around a field line, but the field line instead of being straight, curves off to a side.  As far as 

the motion of the guiding centre is concerned, this is equivalent to a centrifugal acceleration 

of magnitude Rv /
2

|| , which means a centrifugal force of magnitude Rvm /
2

|| .  The same 

effect would have been produced had there been an electric field, 
2

||2
v

R

R

q

m
Eeff


 

 .  This 

effective field is in a direction transverse to the magnetic field.  Since the radius of curvature 

is large compared to the radius of gyration, the effective electric field is small compared to 

the magnetic induction.  The motion is therefore equivalent to that in crossed electric and 

magnetic fields with E<cB.  This causes a drift with drift velocity 
2B

BE
c




.  Thus the 

curvature of the lines of force leads to a curvature drift velocity, cv


, given by 

 

   
2

||2

0

2

0

2
v

BR

BR

q

m

B

BE
v

eff

c


 







.    (15) 

 

 We emphasize that no actual electric field is produced.  The effect of a force F


 on 

the motion of a particle does not depend on the origin of that force.  Thus the effect is 

the same had an actual electric force been present. 

 

 The frequency of gyration is given by mBqB  /0


 .  Using this expression, cv


 can 

be written in a more transparent form 
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 The direction of the drift is specified by the vector product in which R


 is the radius 

vector from the effective centre of curvature to the position of the particle.  Thus if 

the field is along the x-axis and the lines of field are curving upwards, so that the 

centre of curvature is along the positive y-direction, the drift velocity is along the z 

direction. 

 

 This is true for a positively charged particle.  For a negative charge the sign will be 

opposite because of the factor B . 

 

 The direction of drift is independent of the sign of | |v , since it depends on the square 

of the velocity. 

 

22.2.1 An alternative derivation of curvature drift 

 

A more straightforward derivation of the curvature drift can be given by the direct solution of 

the Lorentz force equation.  If the centre of curvature is chosen as the origin of the system of 

coordinates, then in cylindrical coordinates, the magnetic field has only an azimuthal 

component, 0BB  . 

 

Let us recall some of the relevant results from vectors in cylindrical coordinates.  Write a 

vector A


 in both cylindrical and Cartesian coordinates: 
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Here )ˆ,ˆ,ˆ( z  are unit vectors along the three cylindrical coordinates.  Then 
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In particular 
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Here the dot (.) on a variable refers to time derivative.  Since in a magnetic field the energy is 

constant, the Lorentz force equation Bv
c

q

dt

pd 


  becomes 
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On comparing the coefficients of various unit vectors, zr ˆ,ˆ,ˆ  , we obtain 
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We are looking for the lowest order solution for which ρ=R.  The second equation then gives 

0 , or  constant=v||/R.  Substituting this in the first equation gives 
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 This is just the curvature drift velocity derived earlier.  Note that this is an exact 

solution of the Lorentz force equation. 

 

22.3 Combined curvature and gradient drifts 
 

Consider the gradient drift that accompanies a curvature drift in cylindrical geometry.  The 

magnetic induction is 
ˆˆ

0BBB 


.  In free space. 0 B


.  From the z-component of 

this equation we obtain  
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where 0B is some constant.  Therefore 
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Hence 

 



 

 

  
BR

BR

B

B
B

B

BB
22

2

2

)( 










  



    (28) 

 

Here we have used the lowest order solution, R , the radius of curvature.  The gradient 

drift velocity Gv


 takes the form 
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where Bav  .  We can now combine the two expressions, for Gv


 and Cv


 and obtain for 

the total drift velocity, Dv

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.For charged particles in thermal equilibrium, mean energy is kT
2

3
, and square of each 

component of velocity is kT/m.  Here k is the Boltzmann constant and T the absolute 

temperature.  Since v  has two components, mkTvv /~
2

1
~

22

||  . 

 

 Hence the two terms contribute to the drifts with similar magnitudes. 

 

 Substituting for the velocities in terms of the temperature from above and using the 

numerical value of the charge of electron and other constants, for a singly charged 

particle, we obtain 
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 Particle drifts implied by the above are troublesome in thermonuclear machines 

designed to contain hot plasma.  For the thermonuclear reaction to initiate, the hot 

plasma must attain “sufficiently high” temperature and stay confined for “sufficiently 

long” time.  Because of the drifts the plasma will leak out of the walls and not remain 

confined. 

 

 

22.4 Motion parallel to the Field - Adiabatic Invariance 
 

The various motions we have discussed so far have been perpendicular to magnetic lines of 

force.  These motions, caused by the electric fields or by the gradient or curvature of the 

magnetic field, arise because of the peculiarities of the Lorentz force, in particular, the fact 



 

 

that the force due to magnetic field is perpendicular to both the field and the velocity.  These 

lead to “drifts” which at first sight seem to be counterintuitive.  To complete our study of the 

motion in magnetic field, we now consider motion parallel to the magnetic field.  It turns out 

that for slowly varying fields a powerful tool is the concept of adiabatic invariants.   

An adiabatic invariant is a property of a physical system that stays constant when changes 

occur slowly.  In thermodynamics, an adiabatic process is a change that occurs without heat 

flow, and slowly compared to the time to reach equilibrium. In an adiabatic process, the 

system is in equilibrium at all stages. Under these conditions, the entropy is constant. 

In mechanics, an adiabatic change is a slow deformation of the Hamiltonian, where 

the fractional rate of change of the energy is much slower than the orbital frequency. The area 

enclosed by the different motions in phase space is the adiabatic invariants. 

In quantum mechanics, an adiabatic change is one that occurs at a rate much slower than the 

difference in frequency between energy eigenstates. In this case, the system does not make 

transitions between energy states, so that the quantum number is an adiabatic invariant. 

The old quantum theory was formulated by equating the quantum number of a system with its 

classical adiabatic invariant. This determined the form of the Bohr–Sommerfeld 

quantization rule: the quantum number is the area in phase space of the classical orbit. 

 

In mechanics, adiabatic invariants are introduced by considering the action integrals of the 

system.  Let a mechanical system be described by the generalized coordinates, qi, and 

generalized momenta, pi.  If a particular generalized coordinate, qi, is periodic then the action 

integral corresponding to it is defined as  

   iii dqpJ      

The integration is over one complete cycle of qi.  For a given mechanical system with given 

initial conditions, the action integrals are constants.  If now the parameters of the system are 

changed in some way, and if the rate of change is slow compared to the rate of periodic 

motion, i.e., if the change is adiabatic, the action integrals are invariant.  The change in the 

parameters will induce a change in the motion of the system in such a way that the value of 

the action integrals will remain the same. Such quantities are called adiabatic invariants. 

22.4.1 Adiabatic invariants in charged particle motions 

Let us consider the motion of a charged particle in a magnetic field.  For a uniform 

and static magnetic field, B


, the transverse motion is periodic (circular in this case).  

The corresponding action integral is 

    ldpJ


.         (31) 

Here ld


 is the line element along the (circular) path of the particle and p


 is the transverse 

component of the canonical momentum  

  AqpP


         (32) 

http://en.wikipedia.org/wiki/Physical_system


 

 

Using this expression (32) into equation (31), we obtain 
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Since v


 is parallel to ld
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, av   and adld ||

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In the first integral, integrating over   gives a factor of 2 .  In the second integral we use 

Stokes’s theorem [   
S

dsnAldA ˆ).(.


] to convert it into a surface integral. The result is 
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

  

Now the normal n̂  to line element is anti-parallel to the direction of the magnetic field B


 is 

negative: 

  )(2 2222 BaqamaqBamJ       (34) 

where we have used the relation 
m

qB


  .  The quantity )( 2Ba  is the flux through the 

particle’s orbit, and this quantity is an adiabatic invariant.  In other words if the 

particle passes through a region in which the magnetic field is varying slowly in time 

or in space, the motion must be such that this flux remains constant.  For example if 

the magnetic field increases the radius of gyration must decrease so that (Ba2) 

remains unchanged.  Using the relation between the transverse momentum, the orbit 

radijus and the magnetic moment of the current loop of the particle, this invariance 

can be phrased in many different ways: 

  2Ba  or Bp /
2

  or    

is an adiabatic invariant. 

22.4.2 Gradient along the field 

Let us now consider a simple situation in which a static magnetic field acts mainly in the z-

direction, but has a small positive gradient in that direction as shown in the diagram below. 

[See FIGURE, Fig 12.5, Jackson] . 



 

 

 

 

 Since the magnetic field is divergence free, i.e., 0.  B


, there is a small radial component 

of the field, in addition to the z-component.  For simplicity we assume cylindrical symmetry.  

Suppose that a particle is spiraling around the z-axis in an orbit with a small radius.  At z = 0, 

the field strength is B0, the transverse velocity of the particle is 0,v


 and the parallel 

component is v||. Since the energy of the particle is fixed, at any position along the z-axis 
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If we assume that the flux is an adiabatic invariant, then 
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Combining the two equations above, we have 
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 As the particle proceeds along the positive z-direction, the magnetic field increases, 

and hence, | |v  decreases.  If B(z) increases enough, eventually the right hand side of 

the equation becomes zero.  Also as B(z) increases, the radius of gyration decreases.  

This means that the particle spirals in an orbit with decreasing radius of gyration, 

converting more and more of its translational energy into rotational energy until its 

axial velocity vanishes.  Then the particle turns around, still spiraling in the same 

sense, clockwise or anti-clockwise, and starts moving in the negative z-direction.  

The particle is reflected by the magnetic field as depicted in the diagram below.  [See 

FIGURE, Fig 12.6, Jackson] 
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 We have thus what is called a magnetic mirror.  The above equation is a consequence 

of the adiabatic invariance of Bp /
2

 .   

 In this particularly simple case the invariance follows directly from the Lorentz force 

equation.  The field must be divergence free: 0.  B


.  In cylindrical coordinates, 

the divergence has the form 
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Since field has radial and axial components, 
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Provided 
z

Bz




 does not vary much with ρ, we have 

   
z

B
B

z

B
d

z

B
B zzz














   




2

1

2

1

0

2
  (40) 

The Lorentz force equation is 

   BvqamF
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The left hand side of this equation is  

   ]ˆˆ)2(ˆ)[( 2 zzmam       (42) 



 

 

The right hand side is 
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On equating the z-components, we have 
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Substituting for Bρ from equation (40) 
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In the present notation, )/()( 0
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On multiplying both sides with z  and integrating yields equation (37). Thus to first 

order in small quantities the constancy of flux follows directly from the equation of 

motion. 

22.4.3 The magnetic mirror and magnetic bottle 

magnetic mirror 

 

Below is an image of an electron beam being reflected by the magnetic mirror effect.  

 

    
 

As we have seen above, a magnetic mirror is a configuration of magnetic field lines in which 

a charged particle is reflected from a region of high magnetic to low magnetic field. 

This mirror effect will only occur for particles within a limited range of velocity and angle of 

approach. Magnetic mirrors are made of specialized electromagnets designed to create a 

highly inhomogeneous field. Large magnetic mirrors have been used experimentally as a 

means of plasma confinement. One major application on which a lot of research is being 



 

 

carried out is to confine the hot, electrically charged plasma inside a fusion reactor to 

generate fusion power.  

The concept of plasma confinement by using the idea of magnetic mirror was proposed in 

mid-1950s.  By the late 1960s, magnetic mirror confinement was considered a viable 

technique for producing fusion.  Magnetic mirrors also play an important role in other types 

of magnetic fusion energy devices such as tokamaks.  

 

Magnetic mirrors also occur in nature. Electrons and ions in the magnetosphere, for example, 

will bounce back and forth between the stronger fields at the poles, leading to the Van Allen 

radiation belts. 

 

Magnetic bottle 

 

 

 

A magnetic bottle is two magnetic mirrors placed close together. For example, two parallel 

coils separated by a small distance, carrying the same current in the same direction will 

produce a magnetic bottle between them. The image shows how a charged particle will 

corkscrew along the magnetic fields inside a magnetic bottle. The particle can be reflected 

from the high field region and will be trapped.  Unlike the full mirror machine which 

typically had many large rings of current surrounding the middle of the magnetic field, the 

bottle typically has just two rings of current. Particles near either end of the bottle experience 

a magnetic force towards the center of the region; particles with appropriate speeds spiral 

repeatedly from one end of the region to the other and back. Magnetic bottles can be used to 

temporarily trap charged particles. It is easier to trap electrons than ions, because electrons 

are so much lighter.  This technique is used to confine very hot plasmas with 

temperatures of the order of 106 K. 

 

In a similar way, the Earth's non-uniform magnetic field traps charged particles coming from 

the sun in doughnut shaped regions around the earth called the Van Allen radiation belts, 

which were discovered in 1958 using data obtained by instruments aboard the Explorer 

1 satellite 

 



 

 

 

Summary 
 

1. In this study of relativistic motion of charged particles in magnetic 

fields is continued.  Motion in static but nonuniform magnetic fields is 

studied for various types of non-uniformities.  

2. Motion in a magnetic field with gradient perpendicular to the 

direction of the magnetic field is described leading to gradient drift of 

the particle. 

3. Next motion in magnetic field with curving lines of force is studied; 

and this leads to the curvature drift. 

4. Both types of non-uniformities can be present together.  It is found 

that the two terms contribute with similar magnitude. 

5.  Finally motion along the direction of a slowly varying magnetic field 

is studied.  The concept of adiabatic invariance is introduced. 

6. Motion along the magnetic field is analyzed by employing these 

adiabatic invariants.   Use of such a configuration as magnetic mirror 

and magnetic bottle is discussed. 


